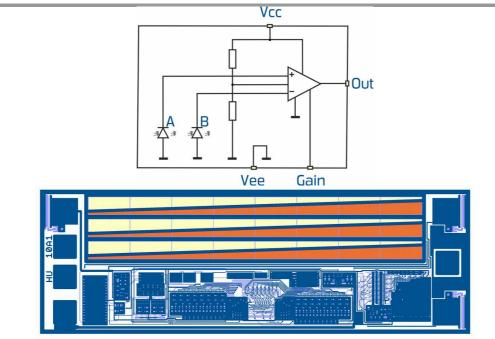
Differential Centre Detector PR5510


Sensor IC for centre detection of a light source.

PR5510 consists of two triplets of triangular photodiodes with reciprocal orientation, together with a differential transimpedance amplifier. If illuminated uniformly, the output is Vcc/2, but depends on the balance of illumination of the triplets.

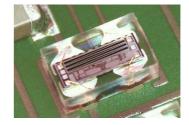
APPLICATIONS

- Light beam alignment
- Optical potentiometers
- Vibration sensors
- Optical position detectors

BLOCK DIAGRAM

Yellow: A photodiodes; orange: B photodiodes

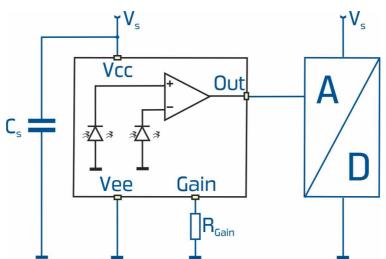
PACKAGES


The PR5510 is offered as bare die or in a tiny optical DFN package.

a) IC as bare die – PR5510-BD

Die size: 2,500 µm x 900 µm

b) In optical DFN package - PR5510-**TM**



ODFN-4L 1.8mm x 2.9mm package.

Differential Centre Detector PR5510

Application Circuit

R_{Gain} sets the gain of the photocurrent amplifier. The output is usually connected to a power amplifier or an analog-digital converter.

Electrical Characteristics

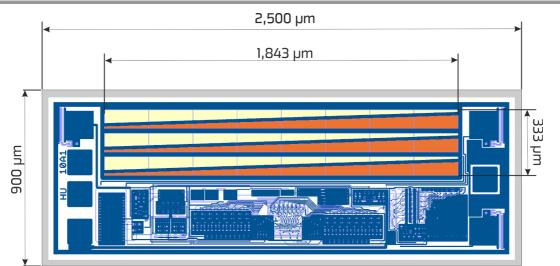
ABSOLUTE MAXIMUM RATINGS

Parameter		Min	Тур	Max	Units
V _{cc} (supply voltage)		-0.3		8	V
V _{PIN} (voltage @ other pins)		-0,3		V _{cc} +0.3	V
Operating Temperature	PR5510- BD PR5510 -TM	-40 -40		85 85	°C °C
Storage Temperature Range	PR5510- BD PR5510 -TM	-55 -40		125 100	°C °C
T」 (Junction Temperature)	PR5201- BD/OC PR5201 -CB/TM	-40 -40		85 85	°C °C
Electrostatic Discharge (ESD) Protection @ all pins	HBM	4			kV

OPERATING CHARACTERISTICS

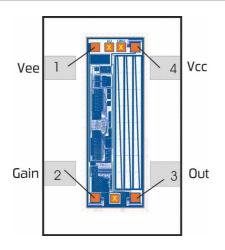
 $V_{CC} = 3.3 \text{ V}, \text{ }T_{J} = -40...85^{\circ}\text{C}$ (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{cc}	Supply voltage		3	3,3	4	V
lcc	Supply current (no load)	R _{gain} = 10k0hm R _{gain} = 150k0hm R _{gain} = open	0.4 0.4 0.4		3.2 0.8 0.7	mA mA mA
Output cha	racteristics					
I _{Load} (Lo)	Out current (Out vs. GND)				0.1	mA
Photosenso	Drs					
λ_{ar}	Spectral application range	Se(λ ar)=0.25* λ_{peak}	500		950	nm
λ_{peak}	Peak sensitivity			800		nm


Gain setting

The gain is set by a resistor $R_{\mbox{\tiny gain}}$ between pin Gain and ground.

Gain Resistor Value	Photocurrent Multiplier	
10k0hm	X 9.7	
150/180k0hm	X 3.7	150k0hm → V_{cc} >3.5V; 180k0hm → V_{cc} < 3.5V
open	× 1.0	

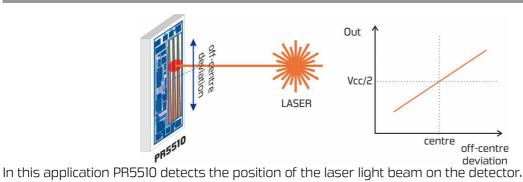

Photodiodes – Dimensions

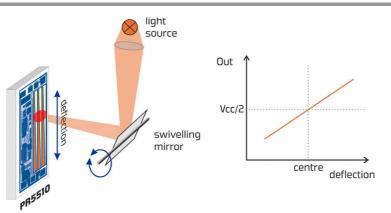
General dimensions:

- Die size: 2,500 µm x 900 µm (measured between centres of scribe lane)
- photodiodes track width: 333 µm
- photodiodes track length: 1843 µm
- Photodiode size : 2 x 0,2175 mm²
- Pad window: 120 μm x 120 μm
- For ODFN-4L package: Chip centre may be offset by up to 200 μm from package centre in any direction.

PIN DESCRIPTION

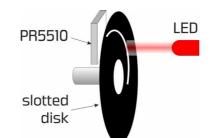
Pin Name	Pin Function Description			
Vee	negative supply voltage			
Gain	gain setting			
Out	amplifier output			
Vcc	positive supply voltage			
	Vee Gain Out			


Test pins are for chip test only and not described in this document.


Application Examples

The following applications examples are meant as suggestions. PREMA does not guarantee usability and cannot give application support for the use in specific devices.

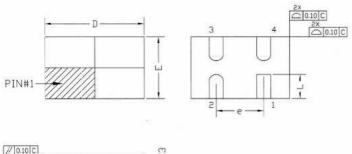
OPTICAL BEAM CENTERING



ANGLE OR VIBRATION DETECTOR

PR5510 can be used to measure the angle of a swivelling mirror. In a similar way, when the mirror picks up the vibration of a surface, PR5510 can be used to detect vibrations or small displacements. The wide bandwidth of the detector can measure vibration frequencies of several 100 kHz.

OPTICAL POTENTIOMETER


By the use of a helically slotted disk, PR5510 can be used in optical potentiometers, or for low-resolution absolute position encoders.

Differential Centre Detector PR5510

PR5510-TM - Package Dimensions

ODFN-4L-1.8x2.9 PACKAGE

0.10 C				EA-
1				÷
	0	- b -	•	1
	•	0.10 🛞	CBA	

A lead-free solder profile with a peak temperature of 260°C or less, according to J-STD-020 should be followed.

Samples shipped without moisture barrier bag must be dry-baked according to JEDEC guide-

	MILLIMETERS			INCHES			
SYM	MIN	NOM	MAX	MIN	NOM	MAX	
A	0.85	0.90	0.95	D.033	D.035	0.037	
A3	0.20 REF.			0.008 REF.			
b	0.35	0.40	0.45	0.014	0.016	0.018	
D	2.80	2.90	3.00	0.110	0.114	0.118	
E	1.70	1,80	1,90	0.066	0.070	0.074	
Ø	1.40 BSC			0.055 BSC			
L	0.60	0.70	0.80	D.023	D.027	0.031	

NOTES:

- 2.
- CONTROLLING DIMENSION IN MM. PACKAGE DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS, BURRS OR METAL SMEARING. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE EXPOSED TERMINALS. 3.
- MAXIMUM COPLANARITY SHALL BE 0.003 [0.08].
- 4. WARPAGE SHALL NOT EXCEED 0.004 [0.10].

lines before soldering. Manual soldering must be done with utmost care.

Direct infrared heating should be avoided; pure convection heating is recommended.

PRELIMINARY DATASHEET - DATA MAY CHANGE WITHOUT NOTICE

Disclaimer

Information provided by PREMA is believed to be accurate and correct. However, no responsibility is assumed by PREMA for its use, nor for any infringements of patents or other rights of third parties which may result from its use. PREMA reserves the right at any time without notice to change circuitry and specifications.

Life Support Policy

PREMA Semiconductors products are not authorized for use as critical components in life support devices or systems without the express written approval of PREMA Semiconductor. As used herein:

I. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PREMA Semiconductor GmbH

Robert-Bosch-Str. 6 55129 Mainz Germany Phone: +49-6131-5062-0 Fax: +49-6131-5062-220

Email: prema@prema.com Web site: www.prema.com